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A Finite-Difference Time-Domain Method
Without the Courant Stability Conditions
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Abstract—In this paper, a finite-difference time-domain method
that is free of the constraint of the Courant stability condi-
tion is presented for solving electromagnetic problems. In it,
the alternating direction implicit (ADI) technique is applied in
formulating the finite-difference time-domain (FDTD) algorithm.
Although the resulting formulations are computationally more
complicate than the conventional FDTD, the proposed FDTD
is very appealing since the time step used in the simulation is
no longer restricted by stability but by accuracy. As a result,
computation speed can be improved. It is found that the number
of iterations with the proposed FDTD can be at least three
times less than that with the conventional FDTD with the same
numerical accuracy.

Index Terms—Alternating direct implicit technique (ADI),
FDTD method, instability, unconditional stable.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1]
has been proven to be an effective means that provides

accurate predictions for varieties of electromagnetic interac-
tion problems [2]. Nevertheless, the FDTD is very memory
and CPU-time intensive and consequently is not suitable for
large-scale problems. Such intensive memory and CPU time
requirements come from two reasons: 1) the spatial increment
steps must be small enough in comparison with the wavelength
(usually 10–20 steps per wavelength) in order to make the
numerical dispersion error negligible, and 2) the time step must
be small enough to satisfy the following stability condition
(the Courant condition):

(1)

Here is the maximum wave phase velocity within the
model.

Various time-domain techniques have been developed to
improve the FDTD computation efficiency. One of them is
the recently developed multiresolution time-domain (MRTD)
method. By using orthonormal wavelet spatial expansions, the
MRTD scheme [3] can reduce the spatial discretization to
two steps per wavelength. However, the stability condition for
MRTD becomes more stringent. The time to spatial step ratio
becomes five times less than that with the conventional FDTD.
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Another technique is the so-called pseudospectral time-domain
(PSTD) method [4]. By using the fast Fourier transform (FFT)
to represent spatial derivatives, the PSTD method can also
achieve a grid arrangement of two steps per wavelength.

In this paper, a FDTD method without the Courant stability
condition is presented. It is based on the Yee’s grid but with the
implementation of the alternative direction implicit technique
that has been widely used to solve parabolic partial differential
equation [5]. As a result, the time step used in the simulation
is no longer restricted by stability but by accuracy of the
algorithm. The numerical results indicate that with the same
accuracy, the proposed FDTD method uses at least three times
fewer of iterations and is at least 1.55 times faster than the
conventional FDTD.

II. THE PROPOSEDFDTD SCHEME

In an isotropic medium, Maxwell’s curl vector equations can
be represented by a system of six scalar Cartesian equations.
For example, let us consider

(2)

The proposed FDTD method consists of the following
discretization process.

1) At the th time step, only the first term
on the right-hand side, is replaced with an implicit dif-
ference approximation in terms of the unknown pivotal
values at the th time step, while the
secondterm on the right-hand side, is replaced with an
explicit finite difference approximation in terms of the
known values at the previousth time step.

2) At the th time step, (thesecondterm) is
replaced by an implicit finite-difference approximation
in terms of the unknown pivotal values at the th
time step while the (the first term) with an
explicit one in terms of the known values at the previous

th time step.

In other words, with the well-known Yee’s finite difference
grid arrangement, (2) is computed in two steps:

(3)
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is used to advance the solution from theth to the th
time step, and

(4)

for the advancement from the th to the (n+2)th time
step.

The notations with are the field
components with their positions in the Yee’s grid being the
same as the conventional FDTD.

Similar expressions can be derived for the other compo-
nents, and at the th and th
time-step, respectively. By substituting the expression for
at the th time-step into (3), one can have

(5)

The equations for the other five components can be derived
in a similar way. Note that in the above equation, there is no
half time-step difference between electric and magnetic field
components.

The above recursive equation can be solved either implicitly
or explicitly. In an actual computation, a recursive scheme can
be used. For example, consider (5). Suppose that the leftmost
values of say at and at the th time step,
are obtained. The rest ’s can be calculated by applying (5)
with a sequence of ascendingthat allows us to find at

from at and In such a way, the computation
efficiency can be improved.

Numerical Stability

It can be proved theoretically that the proposed scheme
is inherently unconditionally stable or without the constraint
of the Courant stability condition. Due to the limit of the
space in this letter, the details of the theoretical proof are
not shown here. However, an experiment was performed to
numerically show the proposed scheme is stable as described
in the following section.

III. N UMERICAL RESULTS

For the sake of simplicity and verifications, a rectangular
cavity was computed with the proposed FDTD scheme. The

(a)

(b)

Fig. 1. Time-domain electric fields with the conventional FDTD and the
proposed FDTD. (a) The conventional FDTD solutions that becomes unstable
with �tj = 1:2 ps. (b) The proposed FDTD solution with�ti = 120 ps.

cavity has the dimension of 9 mm 6 mm 15 mm. A
uniform mesh with mm was used, leading to a total
number of 10 15 25 grid points.

A. Numerical Verification of the Stability

To verify numerically that the proposed FDTD scheme is
unconditional stable, simulations with the conventional FDTD
and the proposed FDTD were run with a time step,
exceeding the time step limit for the stable conventional FDTD
algorithm that is ps
in this case. Fig. 1 shows the electric field recorded at the
center of the cavity. ps was used with the
conventional FDTD while ps (that is 100 times of
1.2 ps) was used with the proposed FDTD scheme. As can be
seen, the conventional FDTD quickly becomes unstable [see
Fig. 1(a)], while the proposed FDTD still gives stable results
[see Fig. 1(b)].

B. Accuracy Versus Time Step

Since the proposed FDTD is always stable, the selection
of the time step is no longer restricted by stability but by
modeling accuracy. As a result, it is meaningful to investigate
how the time step will affect accuracy.

For the comparison purpose, both the conventional FDTD
and the proposed FDTD were used to simulate the cavity again.
This time, the time step ps was chosen with
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Fig. 2. Relative errors of the conventional FDTD and the proposed FDTD as
the function of relative time step�t=�tFDTDMAX : Dash line represents
the unstable point of FDTD scheme.

the conventional FDTD while the variable time step was
chosen with the proposed FDTD to check on the accuracy.

Fig. 2 illustrates the relative errors computed for the domi-
nant mode of the cavity using the conventional FDTD and the
proposed FDTD with variable time steps. For clarity, relative
time-step is used. As can be seen, at low

the errors of both the conventional FDTD
and the proposed FDTD are almost the same. However, after

the conventional FDTD solution be-
comes diverge (unstable) while the proposed FDTD continues
to produce stable results with increasing errors.

C. Computation Memory and CPU Time Saving

Again, for the comparison purpose, both the conventional
FDTD and proposed FDTD were used to simulate the cavity.
This time, the time step ps was chosen
with the conventional FDTD while the time step

ps was chosen with the proposed FDTD. The
reason for such time step selections is that they will provide
similar accuracy with the two methods. The two methods can
then be compared in a fair manner. Twelve hundred iterations
was run with the conventional FDTD and 400 iterations with
the proposed FDTD method. As a result, the physical time
periods simulated by the two methods are the same (since the
time step with the conventional FDTD is one-third of that with
the proposed FDTD). Table I shows the resonant frequencies
obtained with the conventional FDTD and the proposed FDTD.
As can be seen, the errors for both methods are at the same
level.

TABLE I
COMPARISONS OFRESULTS WITH THE

CONVENTIONAL FDTD AND THE PROPOSEDFDTD

Analytic
results (GHz)

Conventional FDTD scheme Proposed FDTD scheme
Simulation

results (GHz)
Relative error Simulation

results (GHz)
Relative error

19.427 19.451 0.12% 19.400 0.14%
26.022 25.972 0.19% 25.961 0.23%
31.652 31.455 0.62% 31.553 0.31%
34.776 34.613 0.47% 34.577 0.57%

On a Pentium 166-MHz PC, it took 58.97 s to finish with the
conventional FDTD and 38.13 s with the proposed FDTD. It is
then concluded that a saving of 1.55 times with the proposed
FDTD was achieved in our case.

IV. CONCLUSION

A three-dimensional (3-D) FDTD method was presented
for solving electromagnetic problems. In it, the Yee’s grid
is used but the alternative direction technique is applied in
formulating the algorithm. As a result, the stability condition
associated the FDTD method is removed. Time step used is
then solely restricted by the accuracy of the numerical discrete
models. Preliminary numerical results showed the validity of
the method. Theoretical roof of the unconditional stability
and theoretical investigations on accuracy including numerical
dispersion of the FDTD method will be presented in our future
publications.

It should be noted that very recently, the 2-D Courant-
condition free FDTD was proposed in [6]. This letter extends
the method to three dimensions with numerical validations.
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